Blind Quantitative Steganalysis Based on Feature Fusion and Gradient Boosting
نویسندگان
چکیده
Blind quantitative steganalysis is about revealing more details about hidden information without any prior knowledge of steganograghy. Machine learning can be used to estimate some properties of hidden message for blind quantitative steganalysis. We propose a quantitative steganalysis method based on fusion of different steganalysis features and the estimator relies on gradient boosting. Experimental result shows that our proposed method has good performance for quantitative steganalysis.
منابع مشابه
Quantitative steganalysis using rich models
In this paper, we propose a regression framework for steganalysis of digital images that utilizes the recently proposed rich models – high-dimensional statistical image descriptors that have been shown to substantially improve classical (binary) steganalysis. Our proposed system is based on gradient boosting and utilizes a steganalysis-specific variant of regression trees as base learners. The ...
متن کاملAn extended feature set for blind image steganalysis in contourlet domain
The aim of image steganalysis is to detect the presence of hidden messages in stego images. We propose a blind image steganalysis method in Contourlet domain and then show that the embedding process changes statistics of Contourlet coefficients. The suspicious image is transformed into Contourlet space, and then the statistics of Contourlet subbands coefficients are extracted as features. We us...
متن کاملSteganalysis with Classifier Combinations
Blind steganalysis is based on choice of the feature set and the machine learning classifiers used for classification. While the performance of individual classifiers is good, the classification accuracy is seen to increase by appropriate combination of classifiers. This research has implemented image steganalysis with fusion of classifiers by various data fusion schemes. We intend to analyse t...
متن کاملSteganalysis Method for LSB Replacement Based on Local Gradient of Image Histogram
In this paper we present a new accurate steganalysis method for the LSBreplacement steganography. The suggested method is based on the changes that occur in thehistogram of an image after the embedding of data. Every pair of neighboring bins of ahistogram are either inter-related or unrelated depending on whether embedding of a bit ofdata in the image could affect both bins or not. We show that...
متن کاملWeaknesses of MB2
Model-based steganography is a promising approach for hidden communication in JPEG images with high steganographic capacity and competitive security. In this paper we propose an attack, which is based on coefficient types that can be derived from the blockiness adjustment of MB2. We derive 30 new features to be used in combination with existing blind feature sets leading to a remarkable reducti...
متن کامل